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A Lorentz gas may be defined as a system of fixed dispersing scatterers, with a single light particle moving
among these and making specular collisions on encounters with the scatterers. For a dilute Lorentz gas with
open boundaries ind dimensions we relate the thermodynamic formalism to a random flight problem. Using
this representation we analytically calculate the central quantity within this formalism, the topological pressure,
as a function of system size and a temperaturelike parameterb. The topological pressure is given as the sum
of the topological pressure for the closed system and a diffusion term with ab-dependent diffusion coefficient.
From the topological pressure we obtain the Kolmogorov-Sinai entropy on the repeller, the topological entropy,
and the partial information dimension.
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I. INTRODUCTION

In the 1970s Sinai, Ruelle, and Bowen developed a for-
malism for calculating dynamical properties of chaotic dy-
namical systemsf1–3g. This formalism resembles very much
Gibbs ensemble theory and therefore was given the name
thermodynamic formalism. From a partition function defined
as an integral over phase space of a particular weight func-
tion, one may derive several dynamical quantities, such as
the Kolmogorov-SinaisKSd entropy, the topological entropy,
the escape rate, or the partial information dimensionf4,5g.

Although the power of this formalism has been widely
recognized, there are only few examples so far of physically
interesting systems for which the topological pressure and
related functions could be evaluated explicitly. One such sys-
tem is the dilute random Lorentz gas. Generally speaking a
Lorentz gas is a system consisting of fixed dispersing scat-
terers, among which a single light particlesor alternatively a
cloud of mutually noninteracting light particlesd moves
about, making specular collisions on each encounter with a
scatterer. The scatterers may be placed either on a periodic
lattice or at random positions in space. Usually the scatterers
are taken to be disks, ind=2, spheres, ind=3, or hyper-
spheres, ford.3. If these are placed on a periodic lattice the
resulting system is also known as the Sinai billiardf6g. In
fact this is also the model Lorentzf13g had in mind origi-
nally for describing the transport of conduction electrons in
metals sstill in the prequantum erad. However, the kinetic
equation he proposed to describe this system, presently
known as the Lorentz-Boltzmann equationssee, for instance,
f7–9gd, in fact is more appropriate for the model with random
scatterer locations, at low density of scatterers. The Lorentz-
Boltzmann equation and some of its generalizations to higher
densitiesf10–12g allow for analytic calculations of transport

coefficients and other fundamental nonequilibrium proper-
ties.

Recently, several dynamical properties have been calcu-
lated analytically for open and closed random Lorentz gases
by using an extended Lorentz-Boltzmann equation approach
f15–18g. Van Beijeren and Dorfmanf14g alternatively used
the thermodynamic formalism to calculate the topological
pressure and related quantities for a diluted-dimensional
random Lorentz gas in equilibrium. For two dimensions this
was extended by the present authorsf19g to the case of a
dilute random Lorentz gas under the combined actions of a
driving field and an isokinetic Gaussian thermostat.

II. THERMODYNAMIC FORMALISM

In chaos theory a central role is played by the time evo-
lution of infinitesimal volumes in phase space. For chaotic
systems such a volume element will grow in some directions
and shrink in others. The factor by which the projection of
the volume element onto its unstablesexpandingd manifold
increases over a timet is called thestretching factor. For an
infinitesimal volume centered originally around the phase
point sr ,vd we will denote its value asLsr ,v ,td. Similarly,
the contraction factor is the factor by which the projection
onto the stablescontractingd manifold decreases over timet.
In analogy to the Gibbs ensemble formalism of statistical
mechanics, we may define a dynamical partition function
Zsb ,td as a weighted integral over phase space. For closed
systems, indicated by a subscript 0, points in phase space are
weighted by powers of their stretching factor, according ton

Z0sb,td =E dmsr,vdfLsr,v,tdg1−b, s1d

where the integration is over an appropriate stationary mea-
sure. In systems with escape, phase space trajectories are
removed from the ensemble if they hit an absorbing bound-
ary. In this case the definition of the dynamical partition
function has to be generalized to
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Zsb,td =E dmsr,vdfLsr,v,tdg1−bxtrsr,v,td, s2d

with xtrsr ,v ,td=0 if the trajectory starting fromsr ,vd at time
0 hits the absorbing boundary before timet and xtrsr ,v ,td
=1 otherwise. In our analogy to statistical mechanics the
parameterb behaves like an inverse temperature and as the
analog of the Helmholtz free energy we obtain thetopologi-
cal pressure Psbd as

Psbd = lim
t→`

1

t
ln Zsb,td. s3d

The dynamical entropy functionhsbd is given by the Leg-
endre transform ofPsbd as

hsbd = Psbd − bP8sbd, s4d

where P8sbd=dPsbd /db. For special values ofb the dy-
namical entropy function can be identified with dynamical
properties, because for long times we haveL.expstoi

+lid,
whereoi

+ li is the sum of all positive Lyapunov exponents
li. Specifically,hsbd equals the topological entropyhtop for
b=0 and the KS entropyhKS for b=1. If the system is
closed, the KS entropy equals the sum of positive Lyapunov
exponents becauseP0s1d=0, as follows directly from Eqs.
s1d and s3d.

However, for open systemsPs1d=−g, where g is the
asymptotic escape rate. The relationshipP8s1d=oi

+li still
holds, but now the Lyapunov exponents are defined on the
repeller, i.e., the subset of phase space from which no trajec-
tories escape. The point wherePsbd intersects theb axis can
be related to the partial Hausdorff dimension, which is a
fractal dimension of a line across the stable manifold of the
attractor. Another fractal dimension associated with the topo-
logical pressure is the partial information dimension which is
given by the intersection point with theb axis of the tangent
to Psbd at Ps1d. For the closed system both dimensions co-
incide and are equal to 1.

III. DYNAMICAL PARTITION FUNCTION FOR THE
OPEN LORENTZ GAS IN d DIMENSIONS

In this section we will calculateZsb ,td for a dilute ran-
dom open Lorentz gas ind dimensions, withN fixed shyperd
spherical scatterers of radiusa distributed randomly inside a
finite volumeV. In addition there is one point particle mov-
ing with velocityv along straight lines between specular col-
lisions with the scatterers. If the particle leavesV it escapes.
“Dilute” implies the conditionnad!1, with the densityn
=N/V.

The condition of diluteness allows us to approximate the
dynamics of the light particle as a random flight, in which
each trajectory between subsequent collisions is sampled
from an exponential distribution of free path lengths and the
collision parameters of each collision are sampled from a
distribution corresponding to a homogeneous bundle hitting
the scatterer. In other words, all effects resulting from recol-
lisions are completely ignored. Under these approximations
the dynamical partition function may be rewritten as

Zsb,td = eP0sbdtE dr E dv dsuvu − v0d

3o
l=0

` E
0

`

dt1 ¯ dtl E dmsŝ1d ¯ dmsŝld

3QSt − o
i=1

l

tiDexpH− Ffnd + P0sbdgSt − o
i=1

l

tiDGJ
3xXr l + vl8St − o

i=1

l

tiDCp
j=1

l

Wsŝ j,tjdxsr jd. s5d

HereP0 is the topological pressure for the closed Lorentz gas
at the same density in equilibrium;ŝi denotes the collision
normal at theith collision, anddmsŝd denotes the probability
measure for scattering with collision normalŝ; Qsxd denotes
the unit step function, i.e.,Qsxd=1 for xù0 andQsxd=0 for
x,0; nd;1/t̄d is the average collision rate, given for di-
mensiond as f14g

nd =
2nvad−1psd−1d/2

sd − 1dG„sd − 1d/2…
, s6d

r j is the position of the light particle at thej th collision, and
xsrd is the characteristic function satisfyingxsrd=1 for r
inside V and 0 otherwise. We implicitly assumed that the
boundary is not concave, so if bothxsr jd and xsr j+1d equal
unity the same is true for the characteristic function of all
points in between. In addition,vl8 is the velocity of the light
particle just after thelth collision. Finally,Wsŝ ,td is an ef-
fective free flight transition rate, defined as

Wsŝ,td = nd e−fP0sbd+ndgt fLdsu,tdg1−b. s7d

Here the stretching factor is given byf15,17g

Ldsu,td = S2vt

a
Dd−1

scosudd−3, s8d

where u is the scattering angle, defined through cosu
=−v̂ ·ŝ, with v̂ the unit vector along the velocity of the light
particle before the collisionssee Fig. 1d. Since in Eq.s7d the
only dependence of the integrand onŝ j occurs through
cosu j, the integrations overdmsŝ jd may be reduced as

FIG. 1. Sketch of a trajectory in two dimensions of the light
particle starting form the initial point and following the first two
collisions.
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E dmsŝ jd → sd − 1dE
0

p/2

du j cosu j sind−2 u j .

Note that in Eq.s7d the actual free flight distribution has
been changed to an effective free flight distribution by mul-
tiplication by thes1−bdth power of the stretching factor and
by the factor expf−P0sbdtg. Similarly, the distribution of col-
lision normals has been changed to an effective distribution.
Indeed, after this rearrangement the integral ofWsŝ ,td over
dmsŝd and positivet equals unityf14g. The second moments
of both time and displacement for the effective distribution
Wsŝ ,td are well defined, and the resulting effective random
flight process for given initial direction gives rise to a con-
vergent average displacement aftern steps in the limitn
→`. Therefore, on large time and length scales it leads to a
normal diffusion process, with ab-dependent diffusion coef-
ficient Dsbd.

On division of the logarithm of Eq.s5d by t the first factor
just simply reduces toP0sbd. The contribution from the re-
maining factor may be interpreted, up to a normalization
factor, as the average survival probability of an initially ho-
mogeneously distributed cloud of light particles of equal en-
ergy, under the effective random flight process with absorb-
ing boundaries described above. Since on large time and
length scales this becomes an effective diffusion process, this
survival probability will behave as expf−k0

2Dsbdtg for long
times, withk0 determined by the geometry of the system and
to some extent by the boundary conditions on the random
flight process. Therefore the second contribution is of the
form −k0

2Dsbd. Combination of these two brings us to the
main result of this paper: the topological pressure for the
dilute open random Lorentz gas may be expressed as

Psbd = P0sbd − k0
2Dsbd. s9d

What remains to be done now is finding an explicit ex-
pression forDsbd as a function of bothb andd. This task is
not particularly hard. The Green-Kubo expression for the
diffusion coefficient as a time integral of the velocity auto-
correlation function gives rise to

Dsbd =
1

d
E

0

`

dtkvWs0d ·vWstdl

=
v2

d Fkt0l + o
l=1

`

kcossp − 2udllktlG . s10d

The first term is the contribution from free flights from the
initial time until the first collision; the next terms result from
free flights between thelth andsl +1dth collisions. Since the
collision cross sections are isotropic and all collisions are
uncorrelated, the average direction of the velocity after the
lth collision is proportional tokcossp−2udll. Then we obtain
from Eqs.s5d and s7d the time averages

kt0l =
kt2l
2ktl

=
1

nd + P0sbdF1 +
sd − 1ds1 − bd

2
G , s11d

ktl =
1

nd + P0sbd
f1 + sd − 1ds1 − bdg, s12d

together with the angular average

kcossp − 2udl =
− bs3 − dd

2sd − 1d + bs3 − dd
. s13d

To understand the first equality in Eq.s11d one should realize
that the probability of finding the initial time on a free time
stretch of lengtht is proportional tot and that the average
time until the first collision under these conditions is just
t /2. Furthermore, Eqs.s11d and s12d only make sense for
b,d/ sd−1d since for largerb values the effective free time
distribution shows a divergencefsee Eqs.s7d ands8dg. Simi-
larly, Eq. s13d has to be restricted to the rangeb.−1, for
d=2, fb, sd−1d / sd−3d for dù4g sfor d=3 there are no
restrictionsd.

The topological pressure for the closed Lorentz gas in
equilibrium is obtained from the first pole of the Laplace
transform of the dynamical partition functionf14,19g and for
the closed Lorentz gas in equilibrium it reads

P0sbd = nd53d − 1

2
S 2v

and
Dsd−1ds1−bd

Gsd + b − dbd

3

GSd − 1

2
DGSd − 1 +bs3 − dd

2
D

GSd − 1 +
bs3 − dd

2
D 4

1/sd+b−dbd

− 16 .

s14d

Note that for the closed Lorentz gas in equilibrium the topo-
logical pressure vanishes forb=1. Now Dsbd is given by

Dsbd =
v2

dfnd + P0sbdgF1 +
sd − 1ds1 − bd

2

−
f1 + sd − 1ds1 − bdgbs3 − dd

2fd − 1 +bs3 − ddg G . s15d

From this we can easily get the normal diffusion coefficient
by settingb=1, i.e.,

Ds1d =
v2sd + 1d

4dnd
. s16d

IV. OTHER DYNAMICAL PROPERTIES

As mentioned before, from the dynamical partition func-
tion we may obtain several other dynamical characteristics of
our system. Forb=1 the topological pressure equals minus
the escape rateg; thus we haveg=k0

2Ds1d. From Eqs.s4d
and s9d we obtain the dynamical entropy functionhsbd as

hsbd = h0sbd − k0
2fDsbd − bD8sbdg, s17d

with D8sbd=dDsbd /db and h0sbd the entropy function for
the closed Lorentz gas in equilibrium.
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Figures 2 and 3 show the topological pressure and the
dynamical entropy, respectively, divided by the collision fre-
quency, as functions ofb for different dimensionsd. As ex-
pected,Psbd is negative forb=1 becausePs1d=−g ssee the
inset of Fig. 2d. Furthermore,Psbd is a convex function for
all dimensions considered. Sincek0!1 for large systems, the
deviations ofPsbd and hsbd from their equilibrium values
are small.

The logarithms of the prefactors of the correction terms in
Eqs.s9d ands17d proportional tok0

2 are plotted in Fig. 4. For
Psbd this prefactor isDsbd, which is always positive within
the allowed ranges ofb andd. As can be seen from Eq.s15d
Dsbd diverges at a pole located atb=sd−1d / sd−3d. In Fig.
4sbd the logarithm of the absolute value of the correction
term for the dynamical entropy is plotted because the pref-
actor changes sign atb<0.4 fsee inset of Fig. 4sbdg. Thus
the correction to the topological entropy atb=0 will be
negative while the one for the KS entropy atb=1 will be
positive ssee also the discussiond.

The KS entropy for generald for the open Lorentz gas is
given by

hs1d = hKS= hKS
0 − k0

2Ds1dFd + 1

2
−

hKS
0

nd
G , s18d

wherehKS
0 is the equilibrium value of the KS entropy for the

closed Lorentz gas ind dimensions. The specific form of this
as a function ofd reads

hKS
0 = nds1 − ddFC − lnS 2v

and
DG +

nd

2
s3 − ddFC + CSd + 1

2
DG ,

s19d

with C Euler’s constant andCsxd the digamma functionf20g.
For d=2 and 3 we can compare our results to previous

calculations based on an extended Lorentz-Boltzmann equa-
tion approachf16g. From Eq.s19d we get the KS entropy for
d=2 as

hKS= hKS
0 − k0

23v2

8n2
F3

2
−

hKS
0

n2
G . s20d

hKS
0 is given by the one positive Lyapunov exponent in equi-

librium

hKS
0 = l0

+ = n2F1 −C − lnSan2

v
DG . s21d

The KS entropy ford=3 follows as

hKS= hKS
0 − k0

2 v2

3n3
F2 −

hKS
0

n3
G . s22d

Here,hKS
0 is given by the sum of the positive Lyapunov ex-

ponents in equilibrium

FIG. 2. sad Topological pressure divided by the collision fre-
quency as a function ofb for different dimensionsd, with the
parameter choicea=1, v=1, n=0.001, andk0=0.001.sbd A closeup
of this for b values around 1.

FIG. 3. sad Dynamical entropy divided by the collision fre-
quency, as function ofb for different dimensionsd and with the
parameter choicea=1, v=1, n=0.001, andk0=0.001.sbd A closeup
of this for b values around 1.
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hKS
0 = o

i

l0,i
+ = 2n3FlnS 2v

an3
D − CG . s23d

As one should expect, Eqs.s20d–s23d are in agreement with
the previous calculation.

From the escape rate formalismf21g we know that the KS
entropy equals the sum of positive Lyapunov exponents mi-
nus the escape rate. Note that here the Lyapunov exponents
are defined on the repeller. Furthermore, forb=1 the topo-
logical pressure equals the escape rateg and this can be
expressed for the open Lorentz gas asg=k0

2Ds1d. Therefore,
we have an equation for the sum of positive Lyapunov ex-
ponents of the open Lorentz gas,

o
i

li
+ = o

i

l0,i
+ + k0

2D8s1d s24d

=hKS
0 + k0

2Ds1dF1 − d

2
+

hKS
0

nd
G . s25d

The correction term proportional to the diffusion coefficient
is always positive, because for low densities the term
lns2v /andd@1 in Eq. s23d dominates. Hence, the sum of

positive Lyapunov exponents is always larger for the open
system than for the corresponding closed system. This again
is in quantitative agreement with previous resultsf16g.

Since we have an expression for generalb we can also
calculate the topological entropyhtop which is given byhsbd
for b=0. For generald this is given by

hs0d = htop = htop
0 − k0

22Ds1dnd

htop
0 + nd

, s26d

with the equilibrium value of the topological entropy

htop
0 = ndHFd − 1

Î2
S 2v

and
Dsd−1d/2

GSd − 1

2
DG2/d

− 1J . s27d

So we may conclude that the topological entropy is always
smaller than in equilibrium.

In Fig. 5 the relative corrections to the KS entropy and the
topological entropy are plotted as functions ofd. For htop the
ratio to the equilibrium value is very small. It decreases ex-
ponentially withd, because asymptotically for larged htop

0 is
independent of the radiusa, whereas the collision frequency
nd is proportional toasd−1d. For hKS the correction, scaled as
in the figure, appoaches unity in the limit of larged, as
follows readily from Eqs.s18d and s6d plus Stirling’s ap-
proximation lnGsxd<x lnx−x.

More dynamical properties can be obtained fromPsbd.
The partial Hausdorff dimension is given by the value ofb
wherePsbd intersects theb axis, whereas the partial infor-
mation dimension is given by the value ofb where the tan-
gent atPs1d intersects theb axis f4,22g. For the latter we
easily find that the tangent is given by

FIG. 4. Correction terms proportional tok0
2 of sad the topological

pressurefsee Eq.s9dg and sbd the absolute value of the dynamical
entropyfsee Eq.s17dg as a function ofb for different dimensionsd.
The inset in sbd shows a closeup offDsbd−bD8sbdg around b
=0.4, where this function crosses zero. All results are fora=1, v
=1, andn=0.001.

FIG. 5. Relative corrections to the topological and to the KS
entropy. sad shows the natural logarithm ofshtop−htop

0 dnd/ sghtop
0 d

and sbd showsshKS−hKS
0 dnd/ sghKS

0 d, both as functions ofd, for pa-
rameter valuesa=1, v=1, andn=0.001.
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Ps1d − s1 − bdP8s1d = s1 − bdhKS
0 − k0

2fDs1d − s1 − bdD8s1dg.

s28d

Thus, the partial information dimension follows as

dI = 1 −
k0

2Ds1d
hKS

0 + k0
2D8s1d

= 1 −
1

s1 − dd/2 + hKS
0 s1/g + 1/ndd

s29d

and is clearly smaller than unity. For a large system with
fixed density an expansion for small escape ratesg gives
dI <1−g /hKS

0 . The complexity ofPsbd and theb depen-
dence of the diffusion coefficient prevent a calculation of the
partial Hausdorff dimension. However, for large systems,
wherek0 is very small, the partial Hausdorff dimension will
be very close todI because the point of intersection ofPsbd
with the b axis will be close tob=1; therefore in Eq.s9d
both terms are well approximated by a Taylor expansion
aroundb=1 up to linear order inb.

V. DISCUSSION

We may conclude first of all that for the Lorentz gas the
calculation of corrections to the topological pressure due to
open boundary conditions is remarkably simple; it just re-
quires the solution of an effectiveb-dependent diffusion
equation with the same open boundary conditions. One ques-
tion that could be asked here is whether the diffusion coef-
ficient to be used in this calculation is the same as in a closed
system. Since realizations of the random flight process with a
slightly higher than average collision frequency will have a
slightly lower diffusion coefficient these will lead to a
slightly smaller escape rate from the system. The same can
be argued for processes in which the frequency of back-
scattering events is slightly enhanced and that of forward
scattering is slightly suppressed with respect to the averages
in an equilibrum system. Therefore the average diffusion co-
efficient on the repeller should be slightly smaller than the
diffusion coefficent of the equilibrium system. However, one
easily estimates that the suppression of the diffusion coeffi-
cient is of orderk0

2, leading to a correction of orderk0
4 in the

escape rate. Our results for the corrections to entropies and
dimensions, which are all of orderk0

2, therefore will not be
changed. For higher order corrections of course such terms
are important.

It is very interesting that for the dilute random Lorentz
gas the effects of the open boundary can be separated
straightforwardly into effects due to changes in the distribu-
tions of free flight times and of scattering angles, respec-
tively. This is because the stretching factor first of all factor-
izes sto leading order in the densityd into a product of
stretching factors pertaining to a single free flight plus sub-
sequent collision, and in addition each of those factorizes
into factors depending on the free flight time or the scattering
angles alone. Specifically, one hasLdsu ,td=L1L2, with L1

=s2vt /add−1 and L2=cosd−3u. Rewriting the factorL1−b as
L1

1−b1L2
1−b2 one may obtain the topological pressure and the

effective diffusion constant as functions of bothb1 and b2.
By taking the derivatives of the topological pressure with

respect tob1 andb2 one finds that the two terms on the right
hand side of Eq.s19d may be assigned to the distributions of
free times and of scattering angles, respectively. Similarly
the correction to the sum of the positive Lyapunov expo-
nents, given byk0

2D8s1d, can be separated into a term due to
the change in the free time distribution, which is of the form

DtSl+ = k0
2Ds1dsd − 1dFln

2v
nda

− C −
d − 1

d + 1
G , s30d

and a term due to the change in the distribution of scattering
angles, reading

DuSl+ = k0
2s3 − dd

2
Ds1dFC + CSd + 1

2
D −

d − 1

d + 1
G . s31d

One might be tempted to think that the changes in the distri-
bution function are due primarily to particles near the open
boundary, which will only survive if their free flights keep
them inside the system. This, however, is completely false.
At any given instant the fraction of particles inside a layer of
a few mean free paths near the boundary may be estimated as
proportional to 1/R2, with R an estimate for the diameter of
the system; the volume fraction covered by the boundary
layer is proportional to 1/R and the density near the open
boundary is also of order 1/R compared to the average den-
sity. In addition, in order for a particle trajectory to be on the
repeller, it has to remain inside the system forever after. For
trajectories near the open boundary at the given instant, the
probability for this to happen is another order 1/R smaller
than for trajectories at largef16g. Therefore trajectories get-
ting near the boundary at any time do not contribute at all to
the orderk0

2. Rather, the deviations from the equilibrium dis-
tributions are caused by the fact that free flights or scattering
angles that move a particle away from an open boundary
lead to higher survival probability than ones that bring it
closer to it. If one wants to know how, locally, the distribu-
tion of free times or scattering angles is changed, one would
have to take recourse to the methods laid out in Ref.f16g. It
is fortunate though that the reduction of the dynamical par-
tition function to an effective diffusion problem allows one
to calculate the KS entropy and the like, at least up to order
k0

2, without having to go through the details of this formal-
ism.

An interesting question is in how far the present method
of calculating corrections to the topological pressure from
the solution of a diffusion equation can be generalized to
systems of many moving particles. Unfortunately this does
not seem to be possible in any straightforward way, even for
dilute systems with hard interactions. The reason for this is
the semidispersing character of the dynamics of these sys-
tems, interpreted as billiards in a high dimensional phase
space. Due to this property the dynamical partition function
does not approximately factorize into a product of terms de-
scribing the effects of one free flight and the subsequent
collision. Note that even the Lorentz gas loses this property
at higher densities, where the mean free path between colli-
sions is not large compared to the scatterer radius.
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Further, we remark that, as in the equilibrium and field
driven disordered Lorentz gas, the calculations of the topo-
logical pressure for general values ofb have to be taken with
caution f14,19,23g. Points in phase space are weighted by
L1−b, thus for b sufficiently ,1 the dynamical partition
function will be dominated by the largest stretching factors,
which are due to trajectories confined to regions of high den-
sities of scatterers. Even though the number of such trajec-
tories decreases exponentially with time, the stretching fac-
tors raised to the power 1−b of the remaining ones will still
make these dominant forb sufficiently far from 1. Forb
sufficiently .1, on the other hand, the dynamical partition
function will be dominated by trajectories confined to the
neighborhood of the least unstable periodic orbit.

Finally, it is interesting to consider what happens for sys-
tems such as the wind-tree modelsbasically a two-
dimensional Lorentz gas in which the scatterers are squares
rather than circlesd, which exhibit ordinary diffusive behav-
ior on large time and length scales, but are not chaotic
f24–26g sall Lyapunov exponents are zerod. If one were to
insist on Eq.s4d defining ab-dependent entropy, all common
statements of the escape rate formalism and the thermody-
namic formalism would remain valid, although one would
just trivially havehsbd=−g, since the stretching factor sim-
ply equals unity. It is somewhat disconcerting, however, hav-

ing a negativeentropy, as the usual interpretation of entropy
is that it represents a rate of information gain, under the
silent assumption that all information obtained in the past
remains available. Obviously such a quantity cannot but be
positive. Rather than making definitive statements we prefer
to leave this as an open problem.

In conclusion, we have shown how to relate the thermo-
dynamic formalism for the open Lorentz gas to a diffusive
random flight problem. We have calculated the topological
pressure ind dimensions as a function of the temperaturelike
parameterb. For the open Lorentz gas, the topological pres-
sure is the sum of the topological pressure for the closed
system and ab-dependent effective escape rate which is
given by ab-dependent diffusion coefficient multiplied by
the square of the smallest wave numberk0 fitting the diffu-
sion equation with absorbing boundary equations. From this
we have obtained several dynamical quantities such as the
Kolmogorov-Sinai entropy, the topological entropy, and the
partial information dimension for general dimensiond.
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