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A Lorentz gas may be defined as a system of fixed dispersing scatterers, with a single light particle moving
among these and making specular collisions on encounters with the scatterers. For a dilute Lorentz gas with
open boundaries id dimensions we relate the thermodynamic formalism to a random flight problem. Using
this representation we analytically calculate the central quantity within this formalism, the topological pressure,
as a function of system size and a temperaturelike parangefBne topological pressure is given as the sum
of the topological pressure for the closed system and a diffusion term y@tependent diffusion coefficient.

From the topological pressure we obtain the Kolmogorov-Sinai entropy on the repeller, the topological entropy,
and the partial information dimension.
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I. INTRODUCTION coefficients and other fundamental nonequilibrium proper-
ties.

In the 1970s Sinai, Ruelle, and Bowen developed a for-  Recently, several dynamical properties have been calcu-
malism for calculating dynamical properties of chaotic dy-|ated analytically for open and closed random Lorentz gases
namical systemfl—3]. This formalism resembles very much 1, ;sing an extended Lorentz-Boltzmann equation approach
Gibbs ensemble theory and therefore was given the na 5-1§. Van Beijeren and Dorfmafil4] alternatively used
thermodynamic formalism. From a partition function defined;po thermodynamic formalism to calculate the topological
as an integral over phase space of a particular weight funGsressure and related quantities for a dilatelimensional
tion, one may derive several dynamical quantities, such agyngom Lorentz gas in equilibrium. For two dimensions this
the Kolmogorov-SinaiKs) entropy, the topological entropy, a5 extended by the present authfit§] to the case of a
the escape rate, or the partial information dimen$##). dilute random Lorentz gas under the combined actions of a

Although the power of this formalism has been widely gyiying field and an isokinetic Gaussian thermostat.
recognized, there are only few examples so far of physically

interesting systems for which the topological pressure and Il. THERMODYNAMIC FORMALISM

related functions could be evaluated explicitly. One such sys- ) )

tem is the dilute random Lorentz gas. Generally speaking a !N chaos theory a central role is played by the time evo-
Lorentz gaS iS a System Consisting of fixed dispersing Sca]!.ution Of infinitesimal VOIUmeS in phase Space. For ChaOtiC
terers, among which a single light parti¢ter alternatively a ~ Systems such a volume element will grow in some directions
cloud of mutually noninteracting light particlesmoves and shrink in others. The factor by which the projection of
about, making specular collisions on each encounter with 1€ volume element onto its unstaliexpanding manifold
scatterer. The scatterers may be placed either on a periodigcreases over a tineis called thestretching factor For an
lattice or at random positions in space. Usually the scatteref§finitesimal volume centered originally around the phase
are taken to be diskS, id=2, SphereS, ird:3, or hyper- point (r,v) we will denote its value aﬁ(l’,v,t). S|m|lar|y,
spheres, fod > 3. If these are placed on a periodic lattice thethe contraction factor is the factor by which the projection
resulting system is also known as the Sinai billif6d. In  onto the stablécontracting manifold decreases over tinte
fact this is also the model Lorenfa3] had in mind origi- In analogy to the Gibbs ensemble formalism of statistical
nally for describing the transport of conduction electrons inmechanics, we may define a dynamical partition function
metals (still in the prequantum eja However, the kinetic Z(8,t) as a weighted integral over phase space. For closed
equation he proposed to describe this system, presentBystems, indicated by a subscript 0, points in phase space are
known as the Lorentz-Boltzmann equati@ee, for instance, weighted by powers of their stretching factor, according ton
[7-9]), in fact is more appropriate for the model with random

scatterer Iocation;, at low density_ of scatter(_ars._The Lorentz- Zo(B,1) :f du(r,v)[A(r,v,H)]7, (1)
Boltzmann equation and some of its generalizations to higher

densitieg 10-17 allow for analytic calculations of transport where the integration is over an appropriate stationary mea-

sure. In systems with escape, phase space trajectories are

removed from the ensemble if they hit an absorbing bound-
*Electronic address: H.vanBeijeren@phys.uu.nl ary. In this case the definition of the dynamical partition
"Electronic address: oliver.muelken@physik.uni-freiburg.de function has to be generalized to
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Z(BY = f du(r,o)[A(r,0,H] P (r,0,0), (2)

with x,(r,v,t)=0 if the trajectory starting fronfr,v) at time

0 hits the absorbing boundary before tinand x,(r,v,t)

=1 otherwise. In our analogy to statistical mechanics the
parameterB behaves like an inverse temperature and as the
analog of the Helmholtz free energy we obtain tbpologi-

cal pressure PB) as

FIG. 1. Sketch of a trajectory in two dimensions of the light

o1 particle starting form the initial point and following the first two
P(B) = tlm t InZ(B,9). (3 coliisions.
The dynamical entropy functioh(g) is given by the Leg-
endre transform oP(B) as Z(Bb) :ePO(B)‘j dr f dv 8(v| - vg)
h(8) =P(B) - BP'(B), (4) o
where P’(B)=dP(B)/dB. For special values of3 the dy- X, dtl---dnfdu(c}l)---dﬂ(fn)
namical entropy function can be identified with dynamical 1=0 70
properties, because for long times we have:exp(t=\), ' l
where=; \; is the sum of all positive Lyapunov exponents X0 t= 2t |Jexpy = | [vg+ Po(B)1| t— 2 t;
\i. Specifically,h(8) equals the topological entrody,, for i=1 i=1
B=0 and the KS entropys for g=1. If the system is [ [
closed, the KS entropy equals the sum qf positive Lyapunov ><X(rI + v|'(t -> ti))H W(arj, b)) x(r)). (5)
exponents becaude,(1)=0, as follows directly from Egs. i=1 j=1
(1) and (3).
However, for open systemB(1)=-v, where vy is the  HerePyis the topological pressure for the closed Lorentz gas
asymptotic escape rate. The re|ati0ns|ﬂﬁl):2r)\i still at the same density in equilibriuna; denotes the collision

holds, but now the Lyapunov exponents are defined on theormal at theth collision, anddu(o) denotes the probability
repeller, i.e., the subset of phase space from which no trajecmeasure for scattering with collision normaj ©(x) denotes
tories escape. The point wheP¢g) intersects thegg axis can  the unit step function, i.e©(x)=1 for x=0 and®(x)=0 for
be related to the partial Hausdorff dimension, which is aXx<0; vy=1/74 is the average collision rate, given for di-
fractal dimension of a line across the stable manifold of thenensiond as[14]
attractor. Another fractal dimension associated with the topo-
logical pressure is the partial information dimension which is _ 2mpa® g2
given by the intersection point with th@ axis of the tangent Va= (d-D)r(d-2/2)’
to P(B) at P(1). For the closed system both dimensions co-
incide and are equal to 1. r; is the position of the light particle at th¢h collision, and
x(r) is the characteristic function satisfying(r)=1 for r
I1. DYNAMICAL PARTITION FUNCTION FOR THE inside V and O otherwise. We implicitly assumed that the
OPEN LORENTZ GAS IN d DIMENSIONS boundary is not concave, so if bogr;) and x(rj,,) equal

unity the same is true for the characteristic function of all
points in between. In addition, is the velocity of the light
particle just after théth collision. Finally, W(&,t) is an ef-
fective free flight transition rate, defined as

(6)

In this section we will calculat&(g,t) for a dilute ran-
dom open Lorentz gas it dimensions, withN fixed (hypep
spherical scatterers of radiadistributed randomly inside a
finite volumeV. In addition there is one point particle mov-
ing with velocityv along straight lines between specular col-

. . . . pod . _[P (B)+V ]t 1-B8

lisions with the scatterers. If the particle leawéd escapes. W(G,1) = vg &0 [AG(6,D]F. ()
“Dilute” implies the conditionna®<1, with the densit . o

“N/V P m Here the stretching factor is given p$5,17

The condition of diluteness allows us to approximate the &1
dynamics of the light particle as a random flight, in which Ag(6,t) = (@) (cos6)?-3 (8)
each trajectory between subsequent collisions is sampled ’ a ’
from an exponential distribution of free path lengths and the
collision parameters of each collision are sampled from avhere 6 is the scattering angle, defined through 6éos
distribution corresponding to a homogeneous bundle hitting=-V - &, with ¥ the unit vector along the velocity of the light
the scatterer. In other words, all effects resulting from recolparticle before the collisiofsee Fig. 1 Since in Eq(7) the
lisions are completely ignored. Under these approximationsnly dependence of the integrand @r occurs through
the dynamical partition function may be rewritten as cos;, the integrations ovedu(oj) may be reduced as
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R 2 o _ 1 ~ ~
[ auioy~ - fo 46, cos6; sirt2 6, (=gt @-Da-pl (2

. . o together with the angular average
Note that in Eq.(7) the actual free flight distribution has
been changed to an effective free flight distribution by mul- 0= - B(3-d)
tiplication by the(1-g)th power of the stretching factor and (cosm - 20)) = 2d-1)+B(3-d’
by the factor exp-Py(B)t]. Similarly, the distribution of col- ] o ]
lision normals has been changed to an effective distribution!© Understand the first equality in EG.1) one should realize
Indeed, after this rearrangement the integral\r,t) over that the probability of finding the initial time on a free time
du(&) and positivet equals unity 14]. The second moments stretch of lengthr is proportional tor and that the average

. . . . time until the first collision under these conditions is just
of both time and displacement for the effective distribution
W(o,t) are well defined, and the resulting effective randomT/Z' Furthermore, Eqs11) and (12) only make sense for

flight process for given initial direction gives rise to a con- gidé(?_ 1) shlnce for dl_argelﬁ \(/EaluesEthe;a ffec(';lvg ]fresg t'.me
vergent average displacement aftersteps in the limitn istribution shows a divergen¢see Eqs(7) and(8)]. Simi-

— 0. Therefore, on large time and length scales it leads to %ailg, Fq<((1§’)_ 235((;9 St))ef resér;c'ze]d (fto trc]ﬁ :;a?r?» -1, for

normal diffusion process, with A-dependent diffusion coef- ~ ' '8 or = or a= ere are no

ficient D(B). restrictions. _ .
On division of the logarithm of Eq5) by t the first factor T.h.e 'topo_loglcal jpressure for th.e closed Lorentz gas in

just simply reduces t®y(8). The contribution from the re- equiliprium is obtamed_ from the_: first po_le of the Laplace
L ) ... transform of the dynamical partition functi¢t®4,19 and for

maining factor may be interpreted, up to a normalization ) S

) " — the closed Lorentz gas in equilibrium it reads

factor, as the average survival probability of an initially ho-

mogeneously distributed cloud of light particles of equal en-

ergy, under the effective random flight process with absorb- d- 1( 2% )(d—l)(l—ﬁ)

(13

ing boundaries described above. Since on large time andPy(8) =vy) | ——

> I'd+pa-dp)

length scales this becomes an effective diffusion process, this avy

survival probability will behave as ekpkiD(B)t] for long

times, withk, determined by the geometry of the system and (d _ 1) (d ~1+p8(3- d)) 1/(d+B-dpB)
r r

to some extent by the boundary conditions on the random > 5

flight process. Therefore the second contribution is of the -17.
form —k3D(B). Combination of these two brings us to the BE-d
. . . rNd-1+
main result of this paper: the topological pressure for the 2
dilute open random Lorentz gas may be expressed as (14)
P(B) = Py(B) - ng(lg)_ (9) Note that for the closed Lorentz gas in equilibrium the topo-

logical pressure vanishes f@&=1. Now D(p) is given b
What remains to be done now is finding an explicit ex- g P = (B)is g Y

pression forD(B) as a function of boti8 andd. This task is D(B) = v? 14 (d-1H(1-p)
not particularly hard. The Green-Kubo expression for the p= dlvg+ Po(B)] 2
diffusion coefficient as a time integral of the velocity auto-

correlation function gives rise to _[1+@d-1)A-p)IAE- d)} _ (15)
2ld-1+p(3-d)]
D(B) = }fx d(@(0) - (1)) From this we can easily get the normal diffusion coefficient
dJy by settingB=1, i.e.,
02 o | B vi(d+1)
_v _ D(1) = . 16
=g |+ Z(codm-20)/(n |. (10 D=, (16
The first term is the contribution from free flights from the IV. OTHER DYNAMICAL PROPERTIES

initial time until the first collision; the next terms result from  As mentioned before, from the dynamical partition func-

free flights between thith and (I +1)th collisions. Since the  tion we may obtain several other dynamical characteristics of
collision cross sections are isotropic and all collisions areyyr system. Fop=1 the topological pressure equals minus
uncorrelated, the average direction of the velocity after thehe escape rate; thus we havey= k2D(1). From Egs.(4)

from Egs.(5) and(7) the time averages

h(B) = ho(B) ~ ks[D(B) = BD' ()], a7
(ro) = @ — 1 [1 n d-11 _5)} (11) with D’(B)=dD(B)/dB and hy(B) the entropy function for
21y vg+ Po(B) 2 ' the closed Lorentz gas in equilibrium.
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FIG. 2. (a) Topological pressure divided by the collision fre-  FIG. 3. (a) Dynamical entropy divided by the collision fre-
quency as a function of for different dimensionsd, with the  quency, as function of for different dimensionsl and with the
parameter choica=1,v=1,n=0.001, anck,=0.001.(b) Acloseup  parameter choica=1,v=1,n=0.001, and,=0.001.(b) A closeup
of this for 8 values around 1. of this for 8 values around 1.

Figures 2 and 3 show the topological pressure and the
dynamical entropy, respectively, divided by the collision fre- , o _ 3 o2 vy, d+1
guency, as functions g8 for different dimensiongl. As ex- his=ve(1 =) € =1 avg * 2 @-d|c+v 2 '
pected,P(B) is negative forB=1 becausé>(1)=-7y (see the 19
inset of Fig. 2. FurthermoreP(B) is a convex function for (19
all dimensions considered. Sinkg< 1 for large systems, the

deviations ofP(B) and h(B) from their equilibrium values For d=2 and 3 we can compare our results to previous

are small. _calculations based on an extended Lorentz-Boltzmann equa-

The logarithms of the prefactors of the correction terms ing; approachi16]. From Eq.(19) we get the KS entropy for
Egs.(9) and(17) proportional tok(z) are plotted in Fig. 4. For -5 5g

P(B) this prefactor isD(B), which is always positive within

the allowed ranges g8 andd. As can be seen from E(L5) 0 ,3v?| 3 hos

D(p) diverges at a pole located gt=(d—1)/(d-3). In Fig. hks=hgs— ko; 5T

4(b) the logarithm of the absolute value of the correction V2
term for the dynamical entropy is plotted because the prefhﬁS is given by the one positive Lyapunov exponent in equi-
actor changes sign #~0.4 [see inset of Fig. @)]. Thus  |iprium

the correction to the topological entropy gt=0 will be

with C Euler’s constant an@(x) the digamma functiofi20].

> (20)

negative while the one for the KS entropy @t1 will be 0 . av,
positive (see also the discussipn hes=Ng=12|1=C~In | (21
The KS entropy for general for the open Lorentz gas is
given by The KS entropy ford=3 follows as
d+1 hQ
h(1)=h :h°—2D1[—KS] 18 21, hg
(1= Nes =Pk~ koD (D) 2 vy (18 th:hgs_k(z)gvi 2-—°1. (22)
V3 V3

wherehl is the equilibrium value of the KS entropy for the
closed Lorentz gas id dimensions. The specific form of this Here,hﬁS is given by the sum of the positive Lyapunov ex-
as a function ofd reads ponents in equilibrium
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(@)

In[D(B) v¢/v’]

(b)

1D(B) - BN vyv®

2222000 v FIG. 5. Relative corrections to the topologlcal and to the KS
ikeely entropy. (a) shows the natural logarithm dhy,,— hmp)yd/(yh p)
=1 and (b) shows(hgs—h2 ko) val ( thS) both as functions ofl, for pa-
rameter values=1, v=1, andn=0.001.

........

In | (D(B) - BD'(B)) vV |

B positive Lyapunov exponents is always larger for the open

. . ) system than for the corresponding closed system. This again
FIG. 4. Correction terms proportional kéof (a) the topologlce}l is in quantitative agreement with previous res{it.

pressurgsee Eq.(9)] and (b) thg absolute \_/alue of Fhe dy_namlcal Since we have an expression for genegalve can also

entro_py[se(_e Eq(17)] as a function of3 for different dimensionsl. calculate the topological entrofhy,, which is given byh(B)

The inset in(b) shows a closeup ofD(B)-8D’(B)] around 8 f “0.F H this is ai P b

=0.4, where this function crosses zero. All results areafed, v or p=0. For generadl this Is given by

=1, andn=0.001. 2D(l)vd

h(0) = htop_ h?op kOhO ' (26)
2% top
KS‘ E )‘0' B 2”3{"‘( ,,3> C]' (23 with the equilibrium value of the topological entropy
As one should expect, Eq&0)—(23) are in agreement with o = d-1(2p \@D2 [d-1) (21
. . top — Vd = r - 1 . (27)
the previous calculation. P V2 \ayy 2

From the escape rate formaligi2il] we know that the KS
entropy equals the sum of positive Lyapunov exponents miSo we may conclude that the topological entropy is always
nus the escape rate. Note that here the Lyapunov exponerggaller than in equilibrium.
are defined on the repeller. Furthermore, gx1 the topo- In Fig. 5 the relative corrections to the KS entropy and the
logical pressure equals the escape ratand this can be topological entropy are plotted as functionsdofFor h,, the
expressed for the open Lorentz gas)ak3D(1). Therefore, ratio to the equilibrium value is very small. It decreases ex-
we have an equation for the sum of positive Lyapunov ex{ponentially withd, because asymptotically for largehy) is
ponents of the open Lorentz gas, independent of the radius whereas the collision frequency
vq is proportional toa®=?. For hys the correction, scaled as
E)\r:E)\gﬁng’(l) (24) in the figure, appoaches unity in the limit of largk as
[ [ follows readily from Eqgs.(18) and (6) plus Stirling’s ap-
proximation Inl'(x) = x Inx—Xx.
0 5 1-d h&s More dynamical properties can be obtained fr&tpg).
=hgs*kD(1) > T (25 The partial Hausdorff dimension is given by the valuegof
d where P(B) intersects thes axis, whereas the partial infor-
The correction term proportional to the diffusion coefficient mation dimension is given by the value gfwhere the tan-
is always positive, because for low densities the termgent atP(1) intersects the3 axis [4,22]. For the latter we
In(2v/avy)>1 in Eq. (23) dominates. Hence, the sum of easily find that the tangent is given by
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P()-(1-BP'(1)=(1 ‘ﬁ)h&s‘ kg[D(l) -(1-pB)D'(D)]. respec; tg3; and B, one finds thqt the two term; on th_e right
hand side of Eq(19) may be assigned to the distributions of

(28) free times and of scattering angles, respectively. Similarly
Thus, the partial information dimension follows as the correction to the sum of the positive Lyapunov expo-
) nents, given b)ng’(l), can be separated into a term due to
d=1- koD(1) —1_ 1 the change in the free time distribution, which is of the form
' hdg+ k2D’ (1) (1-d)/2 +h(1/y+ 1/vy)
(29 N S d;l]
AN =kgD(1)(d 1){In v C a1l (30)

and is clearly smaller than unity. For a large system with

fixed density an expansion for small escape r ives

d~ 1_7/ho: The ch)JmpIexity of P(B) and &eﬁa)tdegpen- and a term due to the change in the distribution of scattering
Ks i

dence of the diffusion coefficient prevent a calculation of theangles, reading

partial Hausdorff dimension. However, for large systems,

wherek, is very small, the partial _Hausc_jorff dim_ension will ASNY = k§(3 _d)D(l) C+ ‘I’(d + 1) _d-1 . (31)

be very close tal, because the point of intersection Bf3) 2 2 d+1

with the B axis will be close toB=1; therefore in Eq(9)

both terms are well approximated by a Taylor expansiorOne might be tempted to think that the changes in the distri-

aroundB=1 up to linear order irB. bution function are due primarily to particles near the open
boundary, which will only survive if their free flights keep
V. DISCUSSION them inside the system. This, however, is completely false.

At any given instant the fraction of particles inside a layer of

We may conclude first of all that for the Lorentz gas thea few mean free paths near the boundary may be estimated as
calculation of corrections to the topological pressure due tgroportional to 1R?, with R an estimate for the diameter of
open boundary conditions is remarkably simple; it just re-the system; the volume fraction covered by the boundary
quires the solution of an effectivg-dependent diffusion layer is proportional to 1R and the density near the open
equation with the same open boundary conditions. One quegoundary is also of order R'compared to the average den-
tion that could be asked here is whether the diffusion coefsity. In addition, in order for a particle trajectory to be on the
ficient to be used in this calculation is the same as in a closegkpeller, it has to remain inside the system forever after. For
system. Since realizations of the random flight process with &ajectories near the open boundary at the given instant, the
slightly higher than average collision frequency will have aprobability for this to happen is another orderRlémaller
slightly lower diffusion coefficient these will lead to a than for trajectories at largel6]. Therefore trajectories get-
slightly smaller escape rate from the system. The same caing near the boundary at any time do not contribute at all to
be argued for processes in which the frequency of backthe orderk3. Rather, the deviations from the equilibrium dis-
scattering events is slightly enhanced and that of forwardributions are caused by the fact that free flights or scattering
scattering is slightly suppressed with respect to the averageggles that move a particle away from an open boundary
in an equilibrum system. Therefore the average diffusion cotead to higher survival probability than ones that bring it
efficient on the repeller should be slightly smaller than thecloser to it. If one wants to know how, locally, the distribu-
diffusion coefficent of the equilibrium system. However, onetion of free times or scattering angles is changed, one would
easily estimates that the suppression of the diffusion coeffinave to take recourse to the methods laid out in Ri]. It
cient is of orderkf), leading to a correction of orddxﬁ inthe s fortunate though that the reduction of the dynamical par-
escape rate. Our results for the corrections to entropies aniion function to an effective diffusion problem allows one
dimensions, which are all of ordég, therefore will not be  to calculate the KS entropy and the like, at least up to order
changed. For higher order corrections of course such termg, without having to go through the details of this formal-
are important. ism.

It is very interesting that for the dilute random Lorentz  An interesting question is in how far the present method
gas the effects of the open boundary can be separatest calculating corrections to the topological pressure from
straightforwardly into effects due to changes in the distributhe solution of a diffusion equation can be generalized to
tions of free flight times and of scattering angles, respecsystems of many moving particles. Unfortunately this does
tively. This is because the stretching factor first of all factor-not seem to be possible in any straightforward way, even for
izes (to leading order in the densjtyinto a product of dilute systems with hard interactions. The reason for this is
stretching factors pertaining to a single free flight plus subthe semidispersing character of the dynamics of these sys-
sequent collision, and in addition each of those factorizesems, interpreted as billiards in a high dimensional phase
into factors depending on the free flight time or the scatteringpace. Due to this property the dynamical partition function
angles alone. Specifically, one hag(6,t)=A;A,, with A;  does not approximately factorize into a product of terms de-
=(2vt/a)%! and A,=co$"30. Rewriting the factorA’™ as  scribing the effects of one free flight and the subsequent
A1P1A22 one may obtain the topological pressure and thecollision. Note that even the Lorentz gas loses this property
effective diffusion constant as functions of bqsh and3,.  at higher densities, where the mean free path between colli-
By taking the derivatives of the topological pressure withsions is not large compared to the scatterer radius.
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Further, we remark that, as in the equilibrium and fielding anegativeentropy, as the usual interpretation of entropy
driven disordered Lorentz gas, the calculations of the topois that it represents a rate of information gain, under the
logical pressure for general values@have to be taken with  silent assumption that all information obtained in the past
caution[14,19,23. Points in phase space are weighted byremains available. Obviously such a quantity cannot but be
A8, thus for g sufficiently <1 the dynamical partition positive. Rather than making definitive statements we prefer
function will be dominated by the largest stretching factors,to leave this as an open problem.
which are due to trajectories confined to regions of high den- In conclusion, we have shown how to relate the thermo-
sities of scatterers. Even though the number of such trajedynamic formalism for the open Lorentz gas to a diffusive
tories decreases exponentially with time, the stretching facrandom flight problem. We have calculated the topological
tors raised to the power 15-of the remaining ones will still  pressure ird dimensions as a function of the temperaturelike
make these dominant fg8 sufficiently far from 1. For8  parameteiB. For the open Lorentz gas, the topological pres-
sufficiently >1, on the other hand, the dynamical partition sure is the sum of the topological pressure for the closed
function will be dominated by trajectories confined to thesystem and g3-dependent effective escape rate which is
neighborhood of the least unstable periodic orbit. given by apB-dependent diffusion coefficient multiplied by

Finally, it is interesting to consider what happens for sys-the square of the smallest wave numBgfitting the diffu-
tems such as the wind-tree modébasically a two- sion equation with absorbing boundary equations. From this
dimensional Lorentz gas in which the scatterers are squarege have obtained several dynamical quantities such as the
rather than circles which exhibit ordinary diffusive behav- Kolmogorov-Sinai entropy, the topological entropy, and the
ior on large time and length scales, but are not chaotigartial information dimension for general dimensidn
[24-2€ (all Lyapunov exponents are zgrdf one were to
insist on Eq(4) defining aB-dependent entropy, all common
statements of the escape rate formalism and the thermody-
namic formalism would remain valid, although one would  This work was supported by the “Collective and Coopera-
just trivially haveh(B)=-7, since the stretching factor sim- tive Statistical Physics Phenomena” program of FCRn-
ply equals unity. It is somewhat disconcerting, however, havdamenteel Onderzoek der Materie
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